

6.9V Precision Reference

DESCRIPTION

The RH129 precision reference features excellent stability over a wide range of voltage, temperature and operating current conditions. The device achieves low dynamic impedance by incorporating a high gain shunt regulator around the Zener. The excellent noise performance of the device is achieved by using a buried Zener design which eliminates surface noise usually associated with ordinary Zeners.

The wafer lots are processed to LTC's in-house Class S flow to yield circuits usable in stringent military applications.

ABSOLUTE MAXIMUM RATINGS

Reverse Breakdown Current	30mA
Forward Current	2mA
Operating Temperature Range55°C to	125°C
Storage Temperature Range65°C to	150°C
Lead Temperature (Soldering, 10 sec)	300°C

LTC and LT are registered trademarks of Linear Technology Corporation.

BURN-IN CIRCUIT TOTAL DOSE BIAS CIRCUIT PACKAGE INFORMATION

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

SYMBOL	PARAMETER	CONDITIONS	NOTES	T _A = 25°C OTES MIN TYP MAX		SUB- Group	-55°C Min	T A TYP	125°C Max	SUB- GROUP	UNITS	
$\overline{V_Z}$	Reverse Breakdown Voltage	0.6mA I _R 15mA		6.7		7.2	1					V
V _Z I _R	Reverse Breakdown Voltage Change with Current	0.6mA I _R 15mA 1mA I _R 15mA				14			12			mV mV
V _Z Temp	Temperature Coefficient	I _R = 1mA, RH129A RH129B RH129C								10 20 50	2, 3 2, 3 2, 3	ppm/°C ppm/°C ppm/°C
	Change in TC	1mA I _R 15mA							1			ppm/°C
r_Z	Dynamic Impedance	I _R = 1mA 1mA I _R 15mA	1			2			0.8			
en	RMS Noise	10Hz f 10kHz	2			20	1					μV
V Z Time	Long Term Stability	$T_A = 25^{\circ}C \pm 0.1^{\circ}C,$ $I_R = 1 \text{mA} \pm 0.3\%$			20	·						ppm/kHr

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) (Note 3)

				10KR	AD(Si)	20KRAD(Si)		50KRAD(Si)		100KRAD(Si)		200KRAD(Si)		
SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
VZ	Reverse Breakdown Voltage	0.6mV I _R 15mA		6.7	7.2	6.7	7.2	6.7	7.2	6.7	7.2	6.7	7.2	V
V _Z	Reverse Breakdown Voltage Change with Current	0.6mV I _R 15mA			14		14		20		30		50	mV
V Z Temp	Temperature Coefficient	I _R = 1mA, RH129A			10		10		10		15		20	ppm/°C
Temp	−55°C T _A 125°C	RH129B			20		20		20		25		30	ppm/°C
		RH129C			50		50		50		55		60	ppm/°C

Note 1: Guaranteed by design, characterization or correlation to other tested parameters.

Note 2: Guaranteed by correlation testing including enhancements for popcorn noise detection.

Note 3: $T_A = 25^{\circ}C$ unless otherwise noted.

TABLE 2: ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUP			
Final Electrical Test Requirements (Method 5004)	1*, 2, 3			
Group A Test Requirements (Method 5005)	1, 2, 3			
Group B and D for Class S and Group C and D for Class B End Point Electrical Parameters (Method 5005)	1			

^{*} PDA Applies to subgroup 1. See PDA Test Notes.

PDA Test Notes: The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot. Linear Technology Corporation reserves the right to test to tighter limits than those given.

TYPICAL PERFORMANCE CHARACTERISTICS

Reverse Breakdown Voltage

Temperature Coefficient

Reverse Breakdown Voltage Change with Current

Reverse Dynamic Impedance

I.D. No. 66-10-0174 Rev. A 0397